C . Text analytics

Untangling meanings in unstructured statements

Steven Struhl
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What is text analytics?

e Text analytics can be divided into two types of activities

= Predictive or model-based

e Text becomes a set of predictor variables
used in a model

* Models can have as the target variable
(e.g.) overall ratings, use or purchases

= Descriptive or enumerative

Prefers the predictive

e Probably the most common type of text analytics

» Looks for frequencies of word groups, associations of words, proximities of
words, etc.

e Sentiment analysis falls somewhere between these two

= Some words or phrases are given a negative or positive valence

e These positives and negatives are counted and a total score of positive or
negative or a sentiment score is derived
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Going about text analytics: start with a collection of words

e We begin with a document—or unstructured collections of words
= First, stop words (the, of, and, a, to,...) must be removed
e Frequency of these words is so large that they
can swamp the analysis
= However, stop words should not be filtered when
analyzing frequent phrases

e Phrases can help to identify writers and
provide other stylistic information

* Next words must be made regular
= Spelling errors need to be corrected using a dictionary
= Plurals must be singularized
= |dioms need to be resolved
= Tenses need to be made uniform so that the same word does not get diluted
over minor variations
e This is sometimes called stemming
e We may also look for word pairs (e.g., “not good” or “not bad”)

e Then we can begin

Not our type of stop

——
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Predictive word analysis

e This could be carried out on individual words or phrases

= But this gains the most power after the data has been coded, just as we
would do for any questionnaire

e Models may need to eliminate variables as well as find relationships

e Two demonstrations—
= Bayes Nets selecting variables and building a strong predictive model of
intent to continue
= Classification trees (CHAID) showing strong relationships between
verbatim comments and top box overall ratings

e Both examples start with coded answers

Now for our next demonstration . . .

—
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Bayes Nets find what is important and show how it fits together

e Bayesian network are a remarkable new method discussed in more depth in another
presentation® and an article?
e If you are familiar with structural equation models or PLS path models, these will
look similar—variables and arrows
* However, they can largely be self-constructed,
with data driving the patterns of connections
e Also, the rules are different
= Even though arrows point in one direction
between two variables, influence flows
both ways
= Any change in one part of the network
propagates throughout the entire structure
= The whole network is connected!
e Some terminology is required—
= The variable at the start of an arrow is called a parent
= The variable at the end is called a child of the parent
= The parent node leads to (and can cause) the child node
* Arrows can lead to or from a dependent variable
e Children can have several parents and parents can have several children

The variables keep connected

1w . H H ” . .
Bayes Nets: Harnessing their power 1 “Bayes Nets: Understanding the best newest thing”

——
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We start with 79 coded verbatim comments as independents

and “will renew” as the dependent
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Isolating variables that belong (the Markov blanket)
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e The Markov blanket comes from a

search for strong connections—sifting
through the variables many times,
leaving just parents and children of
the target—and co-parents of any
child

Down to 18 variables!

Note that the arrows show us
unsupervised directions chosen by
the data

Directions really do not matter unless
we are seeking to find

true causation—not possible with
most data we will ever see

Our dependent could be viewed as
the parent rather than the child of
most of these variables

° That is, the independents explain
the target, the way independent
variables work in a regression



Best Bayes Net

ci_Depth_Bresdih_of

e This data-driven,
automatic layout
looks very sensible

e The variable solutions
(highlighted to the right)

leads to several related specific
variables that are close relatives
and more distant from the target

e “Solutions” also connects to
“solutions quality and reliability”
which in turn connects to the target

e Other variables linked to the target—

Software value
Depth/breadth of technology
Consulting services
Hardware improvements
Software improvements

e Direct linkages tend to have the
strongest influence
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The network performed remarkably well

e Correct classification of the two extreme
states (yes and no): 66% and 52%

* Nobody fell in the middle—nothing to
predict there

e This level of prediction is remarkable for
just open-ended responses

e The curve (right) compares how well the
model got the positives right (true
positives) vs. predicting a negative as a
positive (false positives)

e The lower line is chance, so curve area
above the line is improvement

= This shows a strong level of improvement
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The Net also calculates how much influence each variable has

Relationship Analysis

Relative weights
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Example with classification trees (CHAID)

o CHAID provides a great deal of valuable information, but works differently from
Bayes Nets

* While CHAID also predicts patterns in a dependent, it does so by grouping words or
coded phrases

= Each group will be associated with some level of a response

e Forinstance, all the codes in one group will have on average 45% in the top
box of ratings

* Most CHAID programs do not try to calculate variables’ importances
= This makes sense since variables are being grouped

e We will see how this works in the next slides . . .

B

CHAID had nothing whatsoever
to do with forming this group
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How CHAID works: optimal recoding

e CHAID forms groups of open-ended responses that have statistically equal levels of
positive responses
= |t examines every possible way of grouping and finds the way that produces the
strongest statistical difference
e With 30 codes this is millions of possible ways
e This powerful ability is called optimal recoding
e Here CHAID found seven groups of responses
= In top box scores, these range from 81% down to 26%
e A person in the least likely group (26% top box) is less than 1/3 as likely to be
completely satisfied as one in the most likely group (81%)
e Even among the relatively small groups with lower levels of satisfaction, CHAID
quickly uncovered the verbatim comments behind their ratings
e Here is the information shown for each group—
Percent in top box for this group ~—

w459

7 - Other Negative Comments(616)
10 - Issues With the Web site (466)

Numerical code provided for this response —

o Number of individuals giving this response
> 4% of total

/

Percent of the total sample in this group

© 2011,2012, 2013 Steven M. Struhl ‘Converge Analytic
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How verbatim codes align with percent top box in overall ratings

Percent in top box

65%

Total sample

Percent in top box

26%

5 - Call Back Sooner (195)
12 - Confidential Comment (12)
17 - Service / More Training (831)

4% of total

—01

33%

14 - Reps Not Enabled (270)
16 - Rewards/Miles(233)
9 - More Consistent Answers(39)
11 - Issues With the Survey(1)

2% of total

45%

7 - Other Negative Comments(616)
10 - Issues With the Website(466)

4% of total

o,

()
2 - Get to Live Rep Easier(640)
4 - Phone Menu(429)
6 - Better English Speaking(159)
8 - Hours(106)
13 - Problems Transferring Funds (9)
15 - Credit Card Vendor(5)
18 - Credit Limits(14)
20 - Easier to contact branch(181)

6% of total

(cq;mwnt

81%

1 - Satisfied / Positive(9214)

36% of total

61%

No response (10114)
99-Answers in Chinese (300)

41% of total

57%

3 — Time on hold (1728)

7% of total
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Descriptive text analytics




Types of descriptive text analysis

e The Bag—of—-Words Model

= Syntax is irrelevant

= A collection of words is analyzed without regard
to order or grammar

= Analyses—
o Distributions of words
» Distributions compared to known distributions
e Derived measures of importance from the most

frequent words

e The Sequential Model
= A search for words occurring near each other in the document
e Analyses
* A popular method is searching nGrams

Sequences of 3, 4, 5, etc. words
Longer nGrams are similar to phrases in ordinary writing

* Finding the similarity of word pairs by counting how often each pair occurs
in the same nGram
By running an n—words window through the document, stepping one word forward
at a time, we compute the similarity of every possible pair of words

——
© 2011,2012, 2013 Steven M. Struhl ‘conmge Anaivtic 15



Descriptive analysis: Word clustering

e Creates a diagram where words that appear together most in the document
are closest

e The lengths of lines in the diagram corresponds to how often the words
were close to each other—shorter distance is more frequent

e This analysis clustered words via Ward’s method?

e The distance measure is based on the square root of the number of times
each pair of words appeared in a sliding n-gram window

= Taking the square root normalizes the distribution of word frequencies, which
has been shown to improve clustering

Any leaves colored black do not belong to a cluster

1 For the statistically inclined, that’s one of the more
widely used hierarchical agglomerative methods

Pretty enough but apparently
these leaves are not members
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Making a word cloud

e A word cloud is a spatial diagram showing how often words occur near each
other

= Multidimensional scaling (MDS) creates a graph layout of the co—
occurrences of words within a sliding n-gram window

= The words also are sized according to the square root of their frequency
of occurrence in the document

e Once again, the square root transformation is used to normalize the
distribution of frequencies, making the plot more coherent

It seems the Babylonians knew
about square roots.

With some luck, this
presentation is more
intelligible than the inscription

——
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Word clouds with covers or boundaries

We also can draw covers or boundaries around the word clouds, which may
give a better idea of where the closest associations begin and end

There are several types of covers, which can give different results
There is no default or best type of cover
= One type of cover is called a convex hull
= An alpha hull may make a tighter cover on the points
e In our example, these two types came out the same

Another type, the kernel density estimate, may generate somewhat looser
boundaries

Examples of clouds with covers come R D
from the article

Kernel density: This should clear up everything

—
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Word cloud with convex hull or Alpha hull cover
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Word cloud with density kernels hull cover
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Graph layout of words: Clouds with something extra

e Information in this diagram is similar to that in the word cloud

e This looks somewhat different with words having edges, or connections to
other words

* Words with a lot of edges have a high degree, meaning that they show up in
connection with many other words in the document

e This has the possible advantage of looking like a network

= |t conveys some of the complexity of
relationships among words

= That also could be a disadvantage, as
the tangle of lines may obscure
some relationships

Not a graph layout, yet
amazingly similar—the
extreme complexity of
E. coli’s transcriptional

regulatory network
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Graph layout of words
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Graph layout of words

Based on an
insurance
study
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Treemap of words

o Displays something like this have appeared in press stories, and for some may

exemplify text analytics
 Words appear in a block, with words most associated with each other closer and

words less associated farther apart

* Not all treemaps are alike
= A conventional treemap does not order the rectangles statistically
= A Wordle packs words as closely as possible and sizes them according to frequency

e Adjacent words may not be related or located near each other
* In this map, the sizes of the words and their surrounding rectangles are proportional

to the square root of word frequency in the document
= This is the same square root transformation that used elsewhere
= The rectangles are colored based on the hierarchical cluster analysis
* |f regions of rectangles are all one color, that increases our confidence that the cluster
analysis was not due to chance
e However, if colors are scattered throughout
the rectangles, then the clusters likely were

not coherent
e We then would need to read them cautiously

Not our tree map  wsigtice;

——
© 2011,2012, 2013 Steven M. Struhl ‘Converge Analytic 27



Tree Map

Based on an

article on
Bayes Nets

——
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Tree Map

Based on an

insurance
study

——
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Heatmap of word associations

e Heatmaps have appeared as high science in the press
e This heatmap is based on the hierarchical clustering shown earlier

e Color represents the strength of the associations of pairs of words taken
from the most frequent words in the document

= These were computed using the sliding n-gram window run through the
document

= Black pixels show little or no association between words
e The clustering scheme appears along the edges of the map
e The relative popularity of heatmaps is somewhat puzzling

= Research by Cleveland (1984) shows that people have the most difficulty
using color hue, saturation and density as comparative measures

Not our Cleveland—
but 1984

——
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Word counts and betweenness

e This is very basic information about the document yet easily overlooked

* The frequencies of words are compared with what we would expect, assuming that
all words are equally probable

= The red dots show the 95% acceptance intervals for a completely random set of
words

= With frequencies of words random and equally probable, all the bars would fall
inside the red dots

e The second bar graph shows the words’ betweenness centrality

= Betweenness centrality usually identifies people in a social network who are
connected by many relationships

= |n text analysis, words with high betweenness appear near many other words
that represent different concepts

e These words can be viewed as having
multiple meanings or nuances, or as
key connectors of themes

We need to be alert for
multiple meanings
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Associations with flagged words

e Another kind of counting exercise, this shows which words occur along with
each of four selected words

e Like betweenness, this gives a view of how many ideas link to each word—
but with detail on the specific linkages

e This example comes from an insurance study

Word

| authorization

2 educate
3 education
4 educational
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Associated Words

answer authorization calling card deal decrease diagnose direct easier education efficient
eligibility extended guidance hardest hour implement information insurance looking
medication medicine MRI nice patient people period prior problem read referral request
requirement resource revisit simplify sooner suggestion test trained urgent wed

able allow backdate company frequent online panel patient process real refer referral satisfy
system

care delineation difference frequent improve information member patient process question
refer referral responsibility specialist

network requirement service
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Prediction and description in text analytics

These two approaches give different views of what happens in a block of text,
whether it is, e.g., a set of verbatim responses or a complete document

Predictive approaches seek to find the words or combinations of words that predict
patterns in a dependent variable, like share or overall rating

Descriptive methods give more of an overall feeling or a “lay of the land”

= While qualitative in nature, this can enhance understanding of themes and ideas
in the text

= Most text analysis appears to fall under this heading

= |s this supplemental or sufficient? We need to decide

There is much to learn
from the broad outlines—
but is it what we need?
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Questions? Comments? Need more information?
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Dr. Steven Struhl

smstruhl@convergeanalytic.com

smstruhl@gmail.com
& (847) 624-2268
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